Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3410U10-1

FRIDAY, 16 JUNE 2023 – MORNING

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

FOUNDATION TIER

1 hour 45 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	7					
2.	8					
3.	7					
4.	10					
5.	9					
6.	6					
7.	5					
8.	8					
9.	9					
10.	11					
Total	80					

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

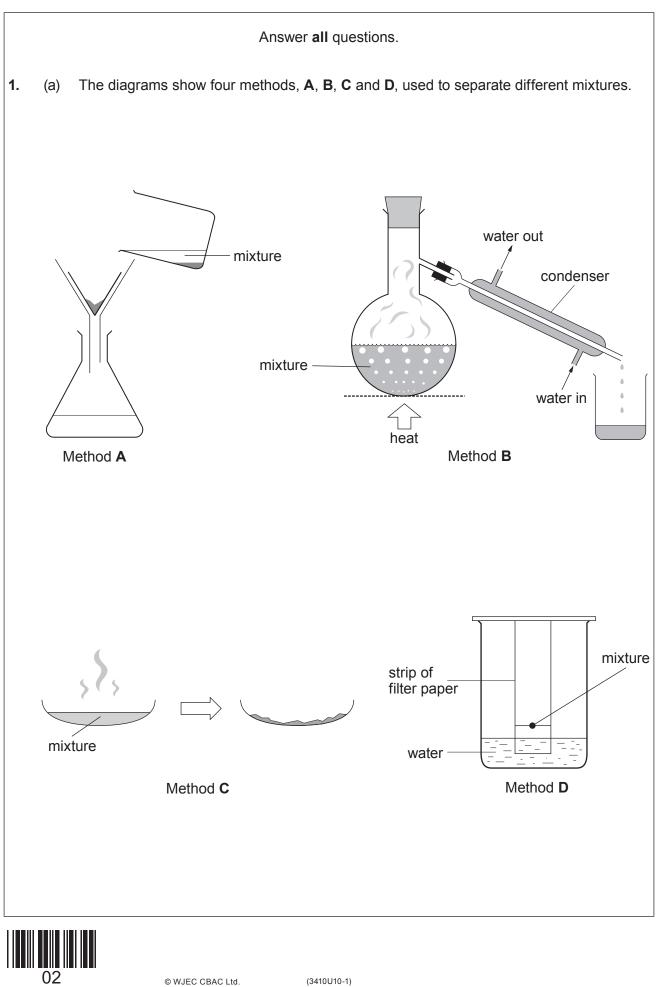
Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

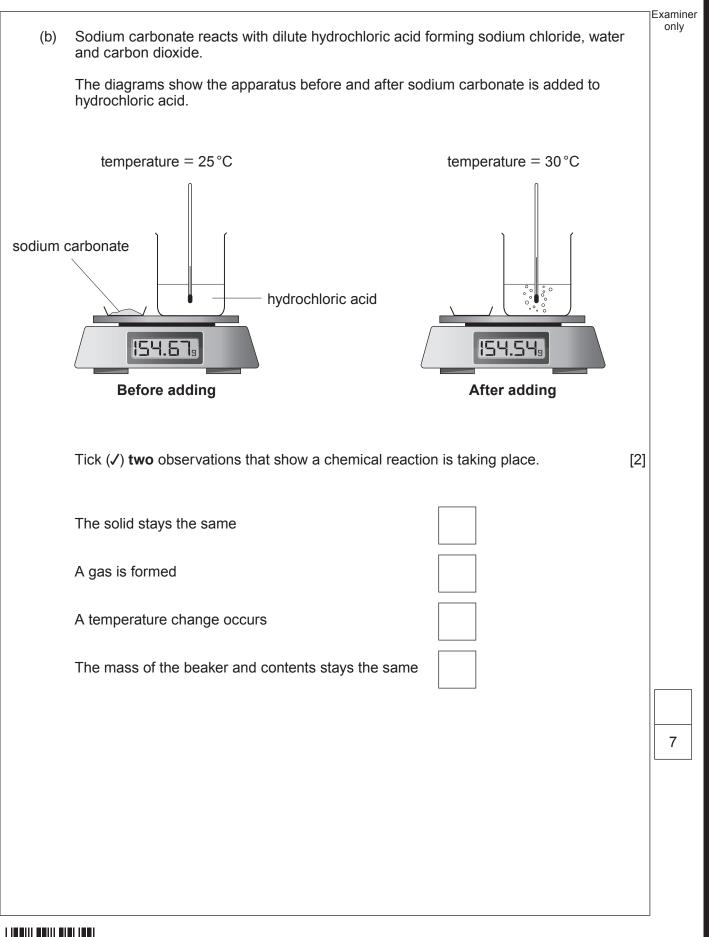
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

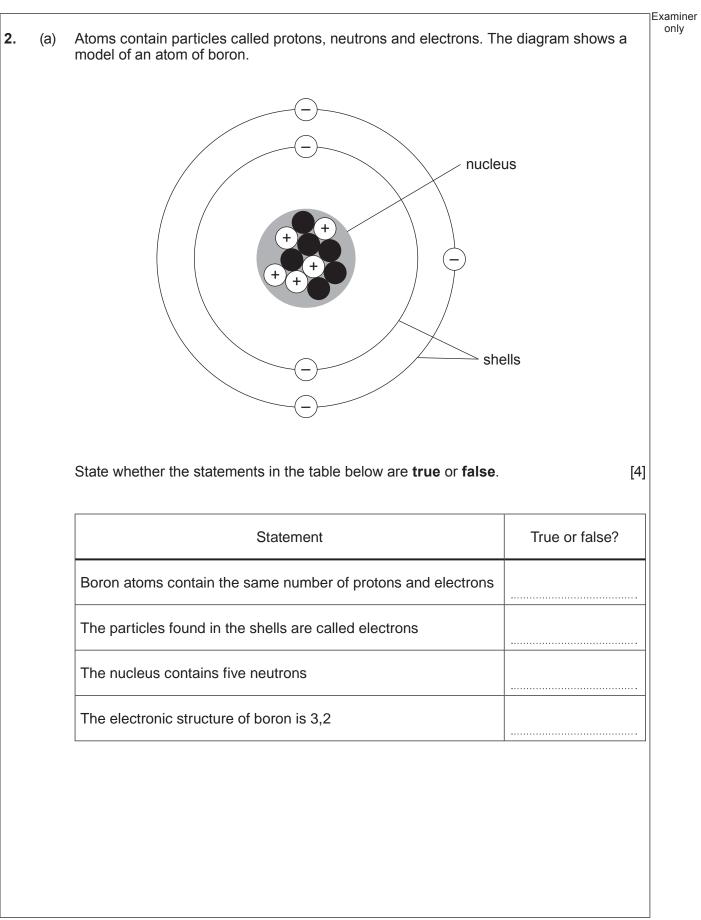

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in Question 5(b).

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

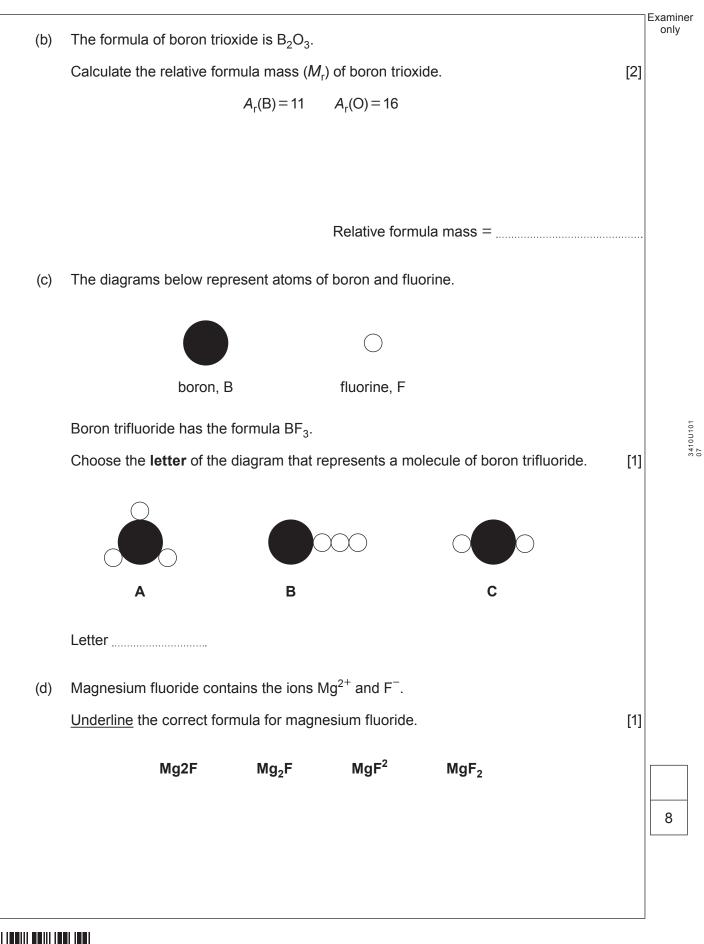

2

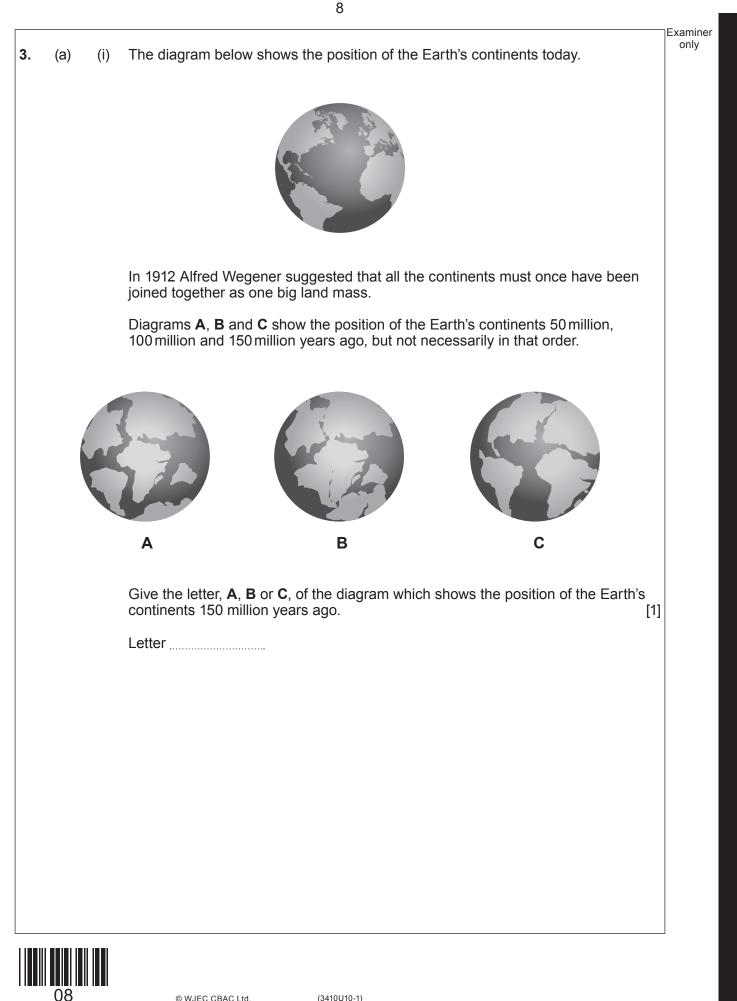
	distillation	chromatography	filtration	evaporation	boiling
	Method B				
	Method D				
i)	Give the letter, A	A, B, C or D, of the me	thod used to		[3]
i)	Give the letter, A remove sand fro		ethod used to		[3]


04

BLANK PAGE

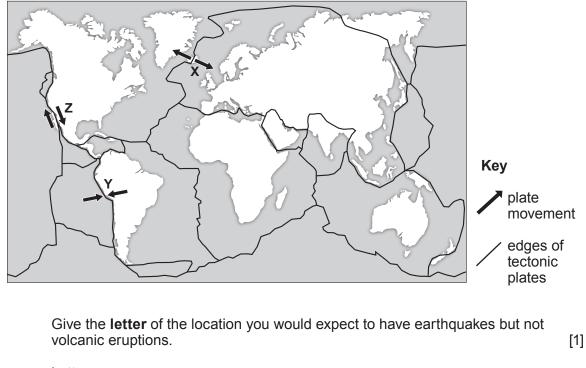
5





(ii) Wegener's theory of continental drift was not accepted by other scientists until several years after his death in 1930. The evidence to support his theory was found in 1960 when part of the ocean floor was surveyed around a plate boundary. The table shows data collected from the survey.

9


Distance of ocean floor from plate boundary (km)	Approximate age of rock (million years)
2000	100

Calculate the mean speed at which the ocean floor is spreading.

mean speed (km/million years) = $\frac{\text{distance (km)}}{\text{time (million years)}}$

Mean speed = _____km/million years

(iii) The map shows some information about tectonic plates and three locations X, Y and Z.

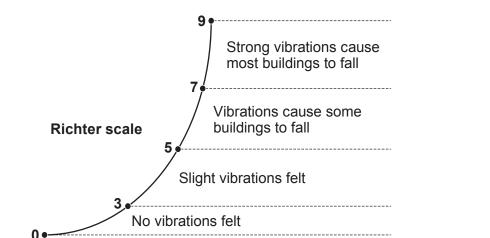
Letter

PMT

Examiner only

[1]

3410U101 09


Examiner only

(b) The photograph below shows 'pillow lava' which was formed from volcanoes on the sea bed at a **constructive** plate boundary millions of years ago. 'pillow lava' on Llanddwyn Island, Anglesey Tick (\mathcal{I}) the box of the diagram that shows a constructive plate boundary where (i) the pillow lava was formed. [1] crust crust crust crust crust crust mantle mantle mantle mantle mantle mantle Complete the sentences by <u>underlining</u> the correct word(s) in the brackets. (ii) [2] Pillow lava is formed at a constructive plate boundary when (magma / sea water / crust) rises and cools, forming new rock. The movement of the Earth's tectonic plates is caused by (electric currents / convection currents / ocean currents) within the mantle.

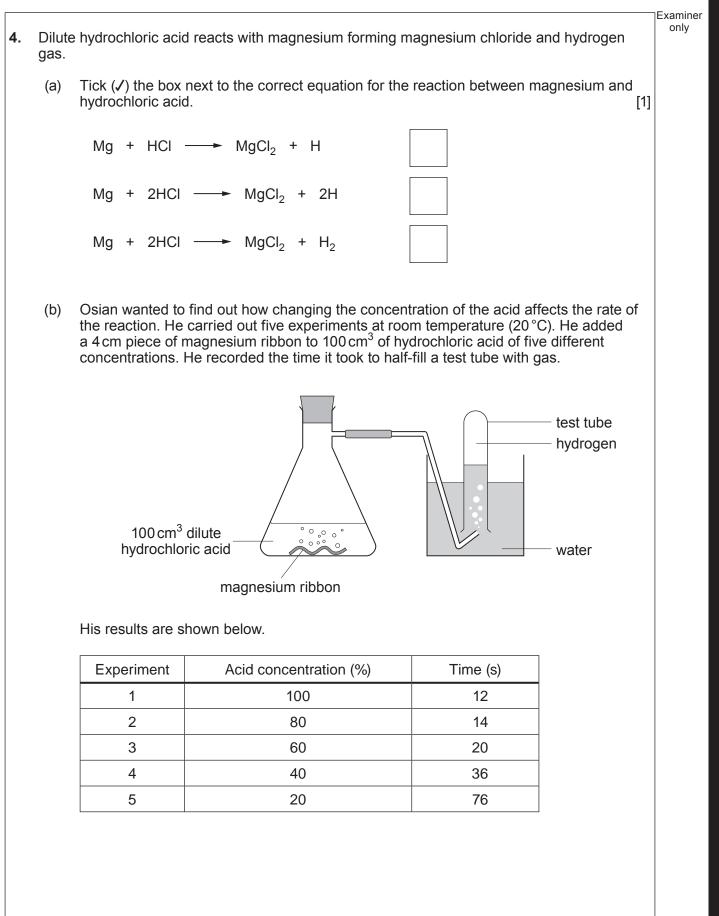
Examiner only

(c) Charles Richter developed the Richter Scale in 1935 to measure the strength of earthquakes.

In June 2018 an earthquake occurred in the Caernarfon area, with a minor tremor being felt.

Circle the number that best shows the size of the earthquake in Caernarfon.

[1]


3410U101 11

4 6 8

1

7

3410U101 13

Examiner only Plot the acid concentration against time on the grid below and draw a suitable line. (i) One point has been plotted for you. [3] 80 70 60 50 Time 40 (S) 30 20 10 0 20 40 60 100 80 Acid concentration (%) <u>Underline</u> the correct word(s) in the brackets to complete the following sentences. (ii) [2] As the acid concentration increases, the time to half-fill the test tube with gas (increases / stays the same / decreases). As the acid concentration increases, the rate of the reaction (increases / stays the same / decreases).

		Evenier
(iii)	Using your knowledge of particle theory, <u>underline</u> the correct words in the brackets to complete the following sentence. [2]	Examiner only
	At a higher concentration, there are (more / less / the same number of) particles present so there will be (an equal / a smaller / a greater) chance of collision.	
(iv)	There are other ways the rate of the reaction can be changed.	
	Tick (\mathcal{J}) the two statements that correctly describe other ways the rate of reaction can be increased. [2]	
	Increasing the temperature of the acid	
	Using a lump of magnesium	
	Using a different apparatus	
	Using magnesium powder	
	Decreasing the temperature of the acid	
		10
		1

3410U101 15

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

Examiner only A student carried out a two-stage experiment to change limestone (calcium carbonate) 5. (a) into slaked lime (calcium hydroxide). limestone Stage 1: Limestone (calcium carbonate) decomposes into quicklime (calcium oxide) and carbon dioxide water quicklime ٥ ٥ Stage 2: Quicklime (calcium oxide) reacts with water forming slaked lime (calcium hydroxide) Write the formulae for calcium oxide and carbon dioxide to complete the equation (i) for the reaction taking place in stage 1. [2] + CaCO₃ -Calcium hydroxide contains one Ca²⁺ ion for every two OH⁻ ions. (ii) Write the chemical formula for calcium hydroxide. [1]

3410U101 17

o)	Examin only
Describe the economic benefits and environmental drawbacks of limestone quarr [rying. [6 QER]

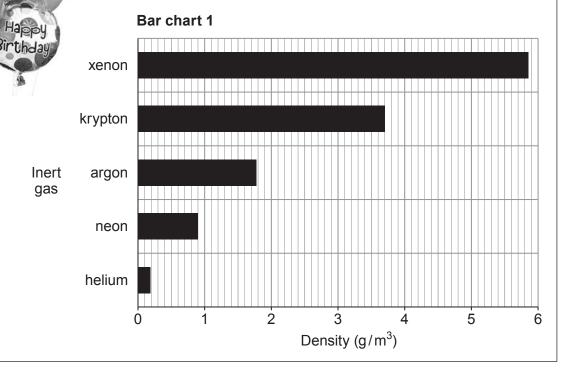
(a) Rhian investigated the decomposition of three different metal carbonates. She measured the time taken for limewater to turn milky using the following apparatus. metal carbonate HEAT Imewater Her results are shown in the table. Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. Most stable Least stable	She measured the time taken for linewater to turn milky using the following apparatus. metal carbonate HEAT linewater Wetal carbonate Time taken for linewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11		ſ	8
metal carbonate Image: FEAT HEAT Image:	metal carbonate Image: Carbonate HEAT Image: Im	a)	Rhian investigated the decomposition of	of three different metal carbonates.
HEAT Junewater Imewater Junewater Her results are shown in the table. Metal carbonate Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable	HEAT Junewater Imewater Junewater Her results are shown in the table. Metal carbonate Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable		She measured the time taken for limew	vater to turn milky using the following apparatus.
Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable	Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable			
copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable	copper(II) carbonate 18 zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable		Her results are shown in the table.	
zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable	zinc carbonate 27 lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable		Metal carbonate	Time taken for limewater to turn milky (s)
lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable	lead carbonate 11 (i) Place the carbonates in order of stability. [1] Most stable		copper(II) carbonate	18
(i) Place the carbonates in order of stability. [1] Most stable	(i) Place the carbonates in order of stability. [1] Most stable		zinc carbonate	27
Most stable	Most stable		lead carbonate	11
			Most stable	·····
				······

	E
If sodium carbonate was used in the investigation the limewater would not turn milky however long it was heated.	
Tick (\checkmark) the reason why the limewater would not turn milky.	[1]
Sodium carbonate only decomposes a small amount on heating	
Sodium carbonate is very unstable	
Sodium carbonate does not decompose on heating	
Sodium carbonate decomposes too quickly	
On heating copper(II) carbonate, Rhian expected to make 5.0g of copper(II) ox She actually made 3.5g.	kide.
Use the formula below to calculate the percentage yield of copper(II) oxide in h experiment.	ner [2]
percentage yield = $\frac{\text{actual mass}}{\text{expected mass}} \times 100$	
Percentage yield =	%
Percentage yield = One of the ions present in copper(II) carbonate is $CO_3^{2^-}$.	% [1]
One of the ions present in copper(II) carbonate is $CO_3^{2^-}$.	
One of the ions present in copper(II) carbonate is $CO_3^{2^-}$. Give the formula of the other ion present.	
One of the ions present in copper(II) carbonate is $CO_3^{2^-}$. Give the formula of the other ion present.	[1]
	milky however long it was heated. Tick (\checkmark) the reason why the limewater would not turn milky. Sodium carbonate only decomposes a small amount on heating Sodium carbonate is very unstable Sodium carbonate does not decompose on heating Sodium carbonate decomposes too quickly On heating copper(II) carbonate, Rhian expected to make 5.0 g of copper(II) on She actually made 3.5 g. Use the formula below to calculate the percentage yield of copper(II) oxide in the experiment. Decremance yield = $\frac{actual mass}{actual mass} \times 100$

7. Is it right to waste helium on party balloons?

Helium is a colourless inert gas found in Group 0 of the Periodic Table.

Helium is one of the commonest elements in the Universe, second only to hydrogen. However, on Earth it is relatively rare, as shown in **Table 1**.

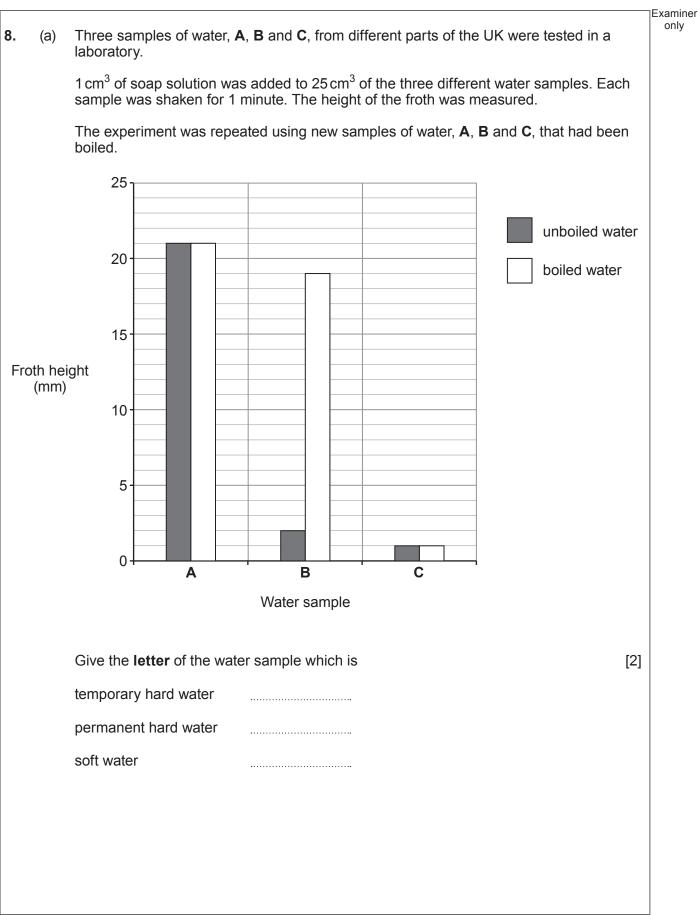

Gases which have a density less than air can escape the Earth's gravity and leak away into space. The density of air is 1.2 g/m^3 . **Bar chart 1** shows the densities of Group 0 gases.

Helium has the lowest boiling point of any element. This makes it of key importance for magnets used in hospital MRI scanners, which must be super-cooled to generate the hugely powerful magnetic fields required.

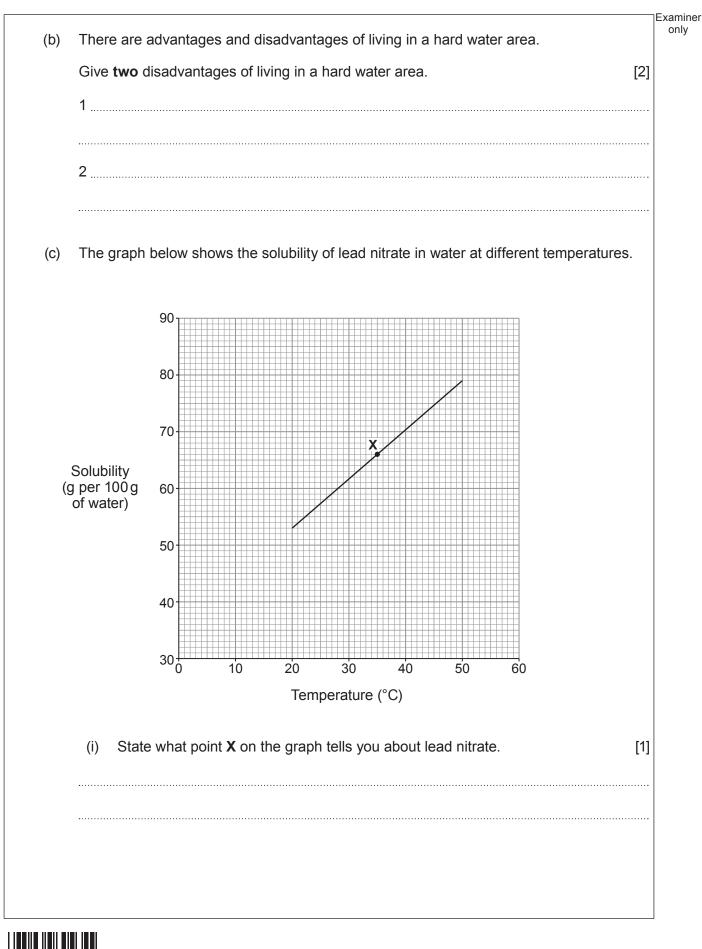
Some scientists believe that because helium is a finite resource it should not be used for party balloons.

Table 1

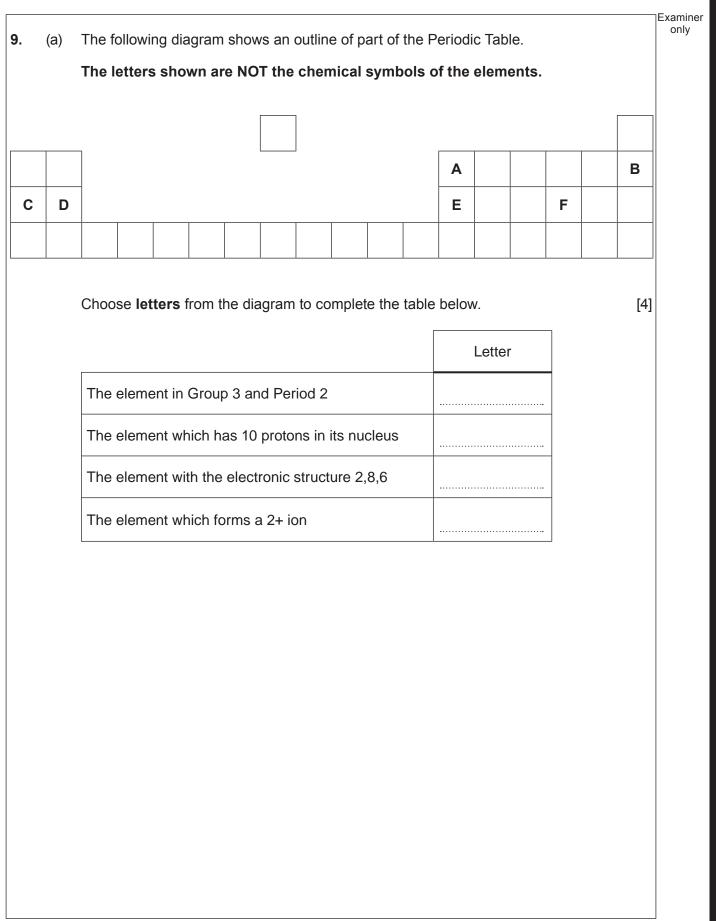
Inert gas	Percentage in the atmosphere (%)	Melting point (°C)	Boiling point (°C)
helium	0.00052	-272	-269
neon	0.0018	-246	-246
argon	0.93	-186	-186
krypton	0.0001	-152	-152
xenon	0.000009	-111	-106

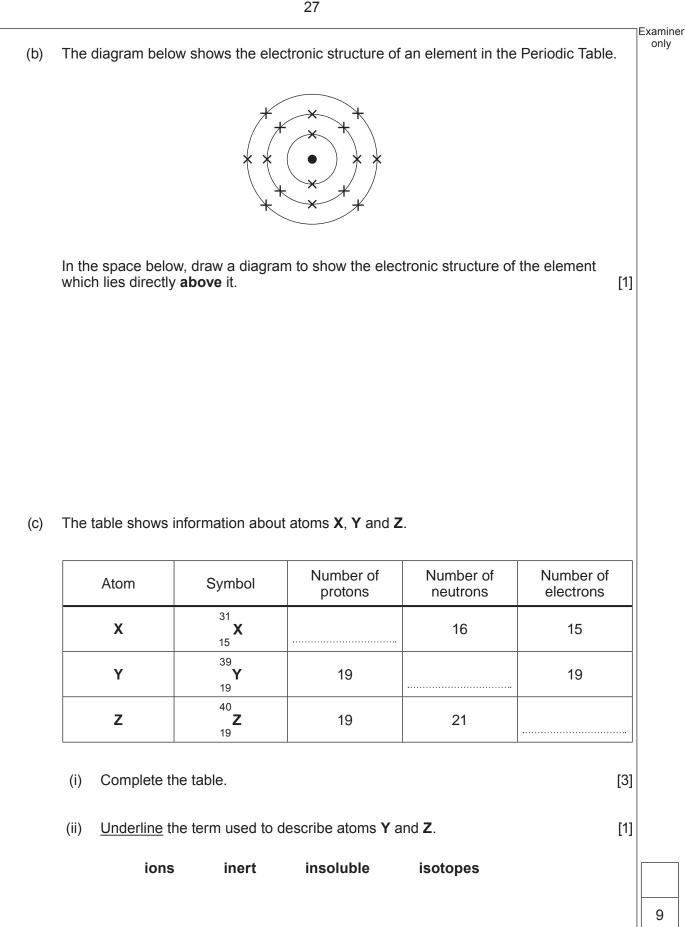


(a)	Ansv	ver the following questions using the information given.	
	(i)	Tick (✓) the box next to the most important property that make material to fill floating party balloons.	es helium a suitable [1]
		Helium is a gas	
		Helium is the second most common element in the Universe	
		Helium is less dense than air	
		Helium is colourless	
	(ii)	Tick (\checkmark) the box next to the correct statement.	[1]
		The Earth's atmosphere contains more helium than argon	
		The Earth's atmosphere contains more xenon than helium	
		The Earth's atmosphere contains more helium than krypton	
	(iii)	Tick (\checkmark) the box next to the best reason for not using helium to	o fill party balloons. [1]
		There isn't much helium in the Earth's atmosphere	
		Scientists say helium shouldn't be used to fill balloons	
		Helium is a finite resource	
	(iv)	Tick (\checkmark) the box next to the correct statement.	[1]
		Only helium gas can leak away into space	
		Helium and neon gases can leak away into space	
		Only argon can leak away into space	
		All inert gases can leak away into space	

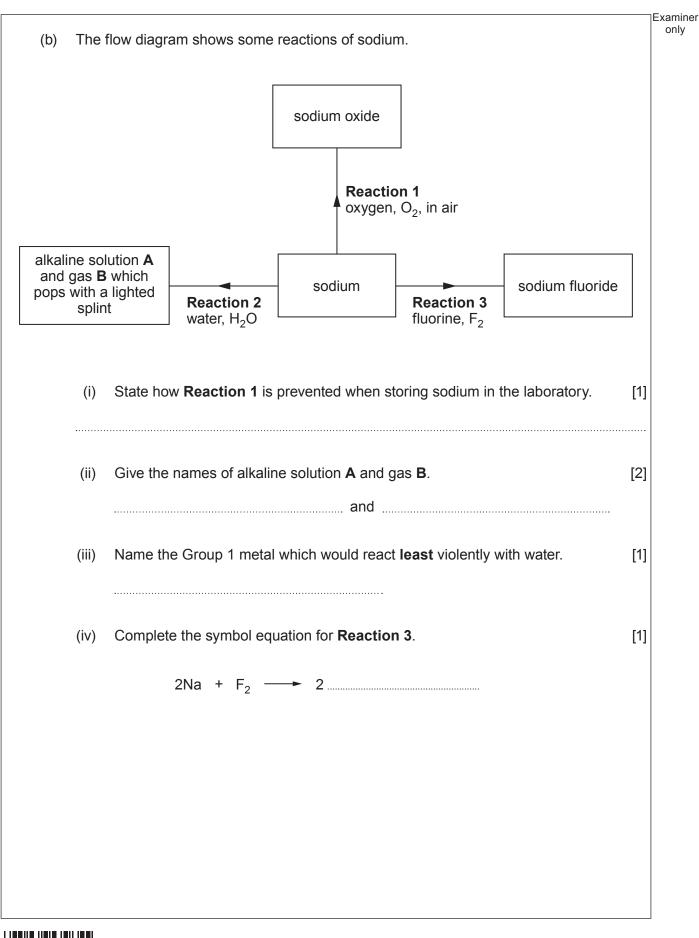


		2	22			
(b)	The table below s	shows the electronic	structure of three Grou	ıp 0 elements.		Examine only
		Group 0 element	Electronic structure			
		helium	2			
		neon	2,8			
		argon	2,8,8			
	unreactive.			Group 0 elements are	[1]	
	All Group 0 elem	ents have 2 electrons	s in their inner shell			
	All Group 0 elem	ents have 8 electrons	s in their outer shell			
	All Group 0 elem	ents have full outer s	hells			
	All Group 0 elem	ents have some full s	shells			
						5




24

		Examiner
(ii)	The solubility of lead nitrate at 20 °C is 53 g per 100 g of water.	only
	Use the graph to find its solubility at 50 °C and hence calculate the mass of lead nitrate crystals that form when a saturated solution containing 100 g of water cools from 50 °C to 20 °C. [2]	
	Mass =	
(iii)	Use the graph to find the solubility of lead nitrate at 5°C. [1]	
	g per 100g of water	
		8
		_



lithium 7 1 180 1342 0.53 sodium 23 1 98 883 0.97 potassium 39 1 63 759 0.89 rubidium 85 1 39 688 1.53 caesium 134 1 29 671 1.93 Use the information in the table to answer parts (i) and (ii). (i) State the information which explains why the elements have similar chemical properties. [1] (ii) State which property has a value which does not fit the trend down the group. [1] [1]	Eleme	ent	Relative atomic mass	Number of electrons in the outer shell	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)
potassium391637590.89rubidium851396881.53caesium1341296711.93Use the information in the table to answer parts (i) and (ii).(i)State the information which explains why the elements have similar chemical properties.[1]	lithiu	m	7	1	180	1342	0.53
rubidium 85 1 39 688 1.53 caesium 134 1 29 671 1.93 Use the information in the table to answer parts (i) and (ii). (i) State the information which explains why the elements have similar chemical properties.	sodiu	m	23	1	98	883	0.97
caesium 134 1 29 671 1.93 Use the information in the table to answer parts (i) and (ii). (i) State the information which explains why the elements have similar chemical properties. [1]	potass	ium	39	1	63	759	0.89
Use the information in the table to answer parts (i) and (ii). (i) State the information which explains why the elements have similar chemical properties. [1]	rubidiu	lm	85	1	39	688	1.53
 (i) State the information which explains why the elements have similar chemical properties. 	caesiı	ım	134	1	29	671	1.93
	(i)	Stat prop	e the informatio perties.	n which explains	s why the eleme	nts have similar	[1]
	(i)	Stat prop	e the informatio perties.	n which explains	s why the eleme	nts have similar	[1]
	(i)	Stat prop	e the informatio perties.	n which explains	s why the eleme	nts have similar	[1]

29

children. In America sodium hexafluorosilicate, Na ₂ SiF ₆ , is more commonly used. The relative formula mass of sodium hexafluorosilicate is 188. (i) Calculate the percentage of fluorine in sodium hexafluorosilicate. [2] $A_r(F) = 19$ $M_r(Na_2SiF_6) = 188$ Percentage =% (ii) State an ethical reason why some people oppose the fluoridation of water supplies. [1] (iii) Apart from water supplies, state the most commonly used source of fluoride to reduce tooth decay. [1]
 (i) Calculate the percentage of fluorine in sodium hexafluorosilicate. [2] A_r(F) = 19 M_r(Na₂SiF₆) = 188 Percentage =
Ar(F) = 19 Mr(Na2SiF6) = 188 Percentage =
Percentage =% (ii) State an ethical reason why some people oppose the fluoridation of water supplies. [1] (iii) Apart from water supplies, state the most commonly used source of fluoride to reduce tooth decay. [1]
 (ii) State an ethical reason why some people oppose the fluoridation of water supplies. [1] (iii) Apart from water supplies, state the most commonly used source of fluoride to reduce tooth decay. [1]
 (ii) State an ethical reason why some people oppose the fluoridation of water supplies. [1] (iii) Apart from water supplies, state the most commonly used source of fluoride to reduce tooth decay. [1]
supplies. [1] (iii) Apart from water supplies, state the most commonly used source of fluoride to reduce tooth decay. [1]
reduce tooth decay. [1]
1

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

BLANK PAGE

BLANK PAGE

BLANK PAGE

aluminium Al^{3+} bromide Br^- ammonium NH_4^+ carbonate CO_3^{2-} barium Ba^{2+} chloride CI^- barium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} hickel Ni^{2+} ootassium K^+ silver Ag^+ sodium Na^+ Ag^+ Ag^+	aluminium Al^{3+} bromide Br^- ammonium NH_4^+ carbonate CO_3^{2-} barium Ba^{2+} chloride Cl^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} hiztsulfatesilver Ag^+ Na^+	POSITIV	EIONS	NEGATI	VE IONS
ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} hi²+ $Ifate$ ootassium K^+ Ag^+ $Iafate$ silver Ag^+ Na^+ $Iafate$	ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} hi²+sulfate $SO_4^{2^-}$ ootassium K^+ silver Ag^+ Ag^+ sodium Na^+ Na^+ Na^+ Na^+	Name	Formula	Name	Formula
barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} magnesium Mg^{2+} hi²+ifate SO_4^{-2-} ootassium K^+ ifate Ag^+ solver Ag^+ ifateifateifate	barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} magnesium Mg^{2+} hi²+ifate SO_4^{-2-} ootassium K^+ ifate Ag^+ solver Ag^+ ifateifateifate	aluminium	Al ³⁺	bromide	Br ⁻
barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} magnesium Mg^{2+} hi²+ifate SO_4^{-2-} ootassium K^+ ifate Ag^+ solver Ag^+ ifateifateifate	barium Ba^{2+} chloride CI^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{-2-} magnesium Mg^{2+} hi²+ifate SO_4^{-2-} ootassium K^+ ifate Ag^+ solver Ag^+ ifateifateifate	ammonium	NH4 ⁺	carbonate	CO3 ²⁻
calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Vi^2 + ificial and and and and and and and and and and$	calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Vi^2 + ificial and and and and and and and and and and$	barium	Ba ²⁺	chloride	
hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Vi^2 + ignedbotassiumK^+Vi^2 + ignedVi^2 + ignedsolverAg^+Ag^+Vi^2 + igned$	hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Vi^2 + ignedbotassiumK^+Vi^2 + ignedVi^2 + ignedsolverAg^+Ag^+Vi^2 + igned$	calcium	Ca ²⁺	fluoride	F⁻
hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	copper(II)	Cu ²⁺	hydroxide	OH [−]
ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi+sulfateSO42-magnesiumMg2+SO42-nickelNi2+SO42-potassiumK+SolaresilverAg+SolaresodiumNa+	ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi+sulfateSO42-magnesiumMg2+SO42-nickelNi2+SO42-potassiumK+SolaresilverAg+SolaresodiumNa+		H⁺	iodide	1-
ron(III) Fe ³⁺ oxide O ²⁻ ithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	ron(III) Fe ³⁺ oxide O ²⁻ ithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺		Fe ²⁺	nitrate	NO ₃ ⁻
ithiumLi*sulfateSO42-magnesiumMg2+Ni2+Image: Solar set of the set	ithiumLi*sulfateSO42-magnesiumMg2+Ni2+Image: Solar set of the set			oxide	O ²⁻
magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	ithium		sulfate	SO ²⁻
nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium			-
ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	nickel	Ni ²⁺		
silver Ag ⁺ sodium Na ⁺	silver Ag ⁺ sodium Na ⁺	ootassium			
sodium Na ⁺	sodium Na ⁺	silver			

Krypton 36 ⁴ Helium ² Xenon 54 Radon 86 Neon 10 Argon 18 40 Ar ₹ 8 222 Rn 0 19 F Fluorine 9 80 Br Bromine 35 35.5 CI Chlorine Astatine 85 lodine 53 210 At 127 Selenium 34 Oxygen 8 Polonium 84 Tellurium 52 32 Sulfur 16 29 Se 210 Po 128 Te [©]0 ဖ Phosphorus 15 75 As Arsenic 33 Nitrogen 7 Bismuth 83 Antimony 51 122 Sb 209 Bi <u>р</u> 3 **5 Z** S Carbon 6 ²⁸ Silicon Germanium 32 73 Ge 207 Pb 82 82 50 Tin 50 Q≌ 4 70 Gallium 31 27 Aluminium 13 204 TI 81 11 Boron 5 115 Indium 49 က 112 Cd Cadmium 48 201 Hg Mercury 80 65 Zn 30 **THE PERIODIC TABLE** 63.5 Cu Copper 29 Ag Silver 47 197 Au Gold 79 Palladium 46 195 Pt Platinum 78 59 Nickel 28 106 Pd 103 Rh Rhodium 45 Iridium 77 59 Co 27 27 192 Ir Ruthenium 44 Osmium 76 56 Fe 26 50 ¹⁰ 190 Os Group Hydrogen Manganese 25 Rhenium 75 Technetium 43 55 Mn ⁹⁹ Tc 186 Re Chromium 24 Molybdenum 42 Tungsten 74 ⁹⁶ Mo 52 C 184 84 Vanadium 23 Tantalum 73 Niobium 93 Nb 181 **Ta** ح 5 4 91 Zr Zirconium 40 Titanium 22 Hafnium 72 179 Hf <u>Т</u>і Scandium 21 139 La Lanthanum 57 Yttrium 39 227 Actinium 89 45 Sc ‰≻

36

relative atomic mass atomic number A_r Symbol Name Z

Key

2

36

Beryllium 4

Lithium 3

ം a

∼ :**_**

24 Mg 12

23 Na Sodium

Calcium 20

Potassium 19

O⁴⁰

₩ 33

Strontium 38

°88 S

86 Rb Rubidium 37

Barium 56

137 Ba

133 Cs 55

226 Ra Radium 88

223 Fr Francium 87